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1 SubHopf Algebra Results

Example. Last time we showed that T'(z) = 1 — B+(T(1w) ).

T(z)=1— 2—) 22— <} + A) x3— + }\_ + 2& + 0 | #4400,

Define to = 1,n > 0,t, = —[2"]T(z). Now what is A(t;)?
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What we are observing is if A be the algebra generated by the t; then A(¢;) C
A® A. So A is not just a subalgebra of the Connes-Kreimer Hopf algebra; it is
also a subHopf algebra.

Theorem 1 [1] Let H be a graded connected Hopf algebra which is either free



(words over generators) or free-commutative ( polynomial algebra over genera-
tors) as an algebra. Let (B )s_y be a family of Hochschild 1-cocycles. Then

T(z) =1+ a"w,BL(T(x)"™),

n=1

where the w, are from k. This has a unique solution given recursively and
Aty = 3300 Paj(to, - tn—j) @ tj, where T(x) = 3207 tna™ and Py j is a
polynomial.

But this isn’t quite satisfactory because the specification is rather special.
If we only have a B, of weight 1, here’s a nice theorem:

Theorem 2 [2] Let P = Z:o:o prx” be a formal power series with pg = 1, then
T(x) = B4+ (P(T(x))) has a unique solution given recursively and the following
are equivalent:

oo

1. The algebra generated by the t; (T'(x) =Y., ~_tna™) is a subHopf algebra.
2. o, B) € Q? such that (1 — afz)P (z) = aP(x).
3. Ia, B) € Q? such that

(a) P(z) =1ifa=0.

(b) P(x) =e** if 3 =0,a #0.

(¢) P(x)=(1-— aﬁx)_% else.

Together

Theorem 3 [3] Suppose

T(x) =) o/ +(P(T(x) ()
jeJ
with J C {1,2,...}, P;(0) = 1, P; formal power series, and suppose the coeffi-
cients of the solution T'(z) form a subHopf algebra. Then one of the following
holds:

1. 3N € Q such that (x) is

T(z) =Y 2/ Bl ((1 - pT(x)Q(T(x))?),
jeJ
where N
_ [ a=mNE o



2.

Im >0 and o € Q, ¢ # 0 such that (%) is

T(z)=> aBl(1+al(x))+ > xzBl(1)

jeJ jeJ
m|j mij

Similar results hold for specification which are systems.

Let’s prove part of Foissy’s 2007 result. We’ll do (1) = (2) = (3). The proof of
(3) = (1) goes through the plane version and involves looking at reductions on
the pairs («, 3).

Proof.

(2) = (3)

Solve the differential equation. If & = 0 the differential equation becomes
P (z) =0, s0 P is a constant and so by the normalization P(z) = 1.
Assume o # 0. If 3 =0, P (z) = aP(z) so P(z) = e®* (and normalize
this way as P(0) = 1).
Assume «, 3 are both nonzero. Then the differential equation is (1 —
aﬁx)% = aP(x), so

dP adx

P(z) 1-—aBx’

SO
dP adx

But P(0) =1,s0 0+ C =0, so C = 0. Therefore log P = log(1 —aﬁx)_%,
so P(z) =(1-— aﬁa:)fé.
Let A be the algebra generated by the coefficients of T'. First note that if

P(z) =1 then T'(x) = x and all is true. So from now on assume P(z) has
a constant term.

Suppose p, # 0,n > 2,n minimal, then t; = t5 = ... = ¢, = 0 but

tnt1 = pnBi(e ™), but By(e ™) :/[\ But by hypothesis we have a

n times

subHopf algebra, so A -%\ C A® A. But A contains no trees of

size 2 — n, which is a contradiction since

A(@)=A®ﬂ+k§<z>-k®m.

——

n times =0 n—k times

So we need to have t,_ # 0, VO < k < n, so p; # 0. As a further
consequence there is a tree of every size in A, because 0 # p1 B (t,) €



H, 1 appears in t,41, where H is the Connes-Kreimer Hopf algebra /Q.
Let Z : H — Q be the characteristic map of o , i.e. Z(F) = d. p on
forests and extended linearly. Consider (Z ® id)A(T ( )) By assumption
A is a subHopf algebra so A(t,) C A® A, so (Z @ id)A(T(z)) € Al[z]].
Also observe the following

(Z ®id)(ab) = (Z @ id)(a)(e @ id)(b) + (¢ ® id)(a)(Z @ id)(b), (1)
for a,b € H® H. Let’s check this. It suffices to check for a, b pure tensors,
ie. a=a1 ®as,b=>b; ® by.

LHS of (1) = (Z & id)(albl & agbg)
_{ a2b2 ifCLl:' ,blzloralzﬂ,blz-

0 otherwise.

On the RHS of (1), again if a; # o ,by # ¢, we get 0. If a; = o then
we have age(by)by + 0, since €(a;) = 0, so for this to be nonzero we need
by = 1. Similarly for the second term on the RHS. (Note throughout I
have pushed scalars on to the ag, by part.) This proves (1).

(Z ®id)A(T(x)) = (Z ®id)A(x B4 (P(T(x)))

(Z ®id)A Z xpp B+ (T (2)"™))

- Z(z @ id)AB, (T(z)")

n=0
=Y apuZ(B+(T(2)") + Y apu(Z © BL)A(T(x)")).
= n=1

(Since AB; = By ® 1 + (id ® B4y)A, we have:)

= Z(T(2)) + B+ (D apn(Z @ id) A(T(z))"),

n=1

since the constant does not affect B .

=t + B+ (Z xnpp(e @ id)A(T(2))""H(Z ® zd)A(T(x))) by (1)

n=0

=t + By (Z enp,T(2)""HZ @ id)A(T(x))
n=0
=t 4+ 2B (P T(2))(Z ® id) A(T(z))).
Next let
L: Hl[z]] — H[[x]]

’

a+— B4 (P (T(x))a).



L increases degree, so id — L is formally invertible. So the calculation
above says
(id = L)((Z @ id)A(T(x))) = Z(T'(z))(t1),

or, equivalenty
(Z @id)A(T(x)) = (id — L) *(t1) = t1(id — L)' (1).
Now since A is a subHopf algebra, we have
(Z @ id)A(T(x)) € Allx]]
=(id — L)~} (1) C A[z]].

Now the third step is to pull out easy coefficient and compare. From
T(x) = xB4+(P(T(x))) we have the recursive expression

n
tr=e tny1=> > prByilta, .. ta,)

k=1ai1+...+ar=n
Write (id — L)~*(1) = "2, b;z’. By induction
bp=1
bny1 = Z Z (k + Dpes1Bo(ta, - - -tay)

k=1ai1+..+ar=n

n

+Y° > kpkBy(bastas - tay)-
k=1ai1+...4+ar=n

Now compare coefficients. Consider B4 (fy), B4+ (by), i.e.trees where the
root has only one child and degree n + 1 in f,,+1 and b,41. Coefficient in
fn+1 18 p1B+(fn), and the coefficient in b,41 is 2paB+(fn) + p1B+(bn),
but by assumption the f,, make a subHopf algebra, and the b, are in it,

SO bnt1 = Apt1frt1, Ang1 € Q. So
2
AL =D1, A1 = (ﬂ + )\n> . (2)
D1

Consider By(e ™) in fpi1 and byy1. In fri1 we get py,, and in by4q we
get (n+ 1)pny1 + nppp1, so

An41Pn = (N + 1)pp1 + npnp1, Vn 21,
which together with (2) gives

P2
(n+ 1)ppg1 + (p1 — 2p—1)npn = P1Pn.
If we rewrite this at level of series we get
P(h) + (o1 =2 2)hP () = i P(R).
1

Now let a = p1,8 = 22—% — 1 to get the result.
1
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